Step by Step Tutorial to creating
R Packages

Heng Wang
Michigan State University



Introduction

* Ris an open source statistical software

* R provides functions to perform statistical
operations

o Classical (regression, logistic regression, ANOVA,
etc)

o Modern (neural networks, bootstrap, genomic
selection, etc)

 (Can be easily extended by make new packages
* To install an R package, use function
install.packages()



Steps to Build an R package

Step 1. Prepare your functions

Step 2. Build the structure of the package using
package.skeleton()

Step 3. Edit DESCRIPTION File

Step 4. Edit the help File

Step 5. Preparation for Windows Users
Step 6. Build and install the R package
Step 7. Check the R package

Step 8. Use the R package




Build an R Package
-- Step 1. Prepare your functions

* Before you write your functions, clear the
working space using rm(list=Is()).

* Write your function. Load all the data you
want to include in the package.

* Set working directory to the position
containing the .R file.



Build an R Package
-- Step 2. package.skeleton()

Run package.skeleton(name, list).

For example: package.skeleton(name="cum",
list=c("my.cumsumprod"”, "xvec.example",
"output.example")

Or, package.skeleton(name=“cum”, . e rod
. ecommenae

code_files="cumsumprod.R")

Or, just simply package.skeleton(name=“cum”

A new folder cum is built. If just run
package.skeleton(), then anRpackage will be
built.



Step 2 (Cont.)

* |nside cum / anRpackage you many find several
folders:

o R: contains R code files
o data: contains data files
o man: contains documentation/manual files (.Rd)

o You may also have src folder, if your function
contains C, C++, or FORTRAN source.

o Other files: tests, exec, inst, etc.



Step 2 (Cont.)

e .. alsosome files.
o Read-and-delete-me : contain instructions for following steps.

* Edit the help file skeletons in 'man’, possibly combining help files
for multiple functions.

* Edit the exports in 'NAMESPACE', and add necessary imports.
* Put any C/C++/Fortran code in 'src'.

* If you have compiled code, add a useDynLib() directive to
'NAMESPACE'.

* Run R CMD build to build the package tarball.
* Run R CMD check to check the package tarball.
Read "Writing R Extensions" for more information.

o DESCRIPTION: manual file of the package.

o NAMESPACE: You can edit it to hide some of the functions.



Build an R Package
-- Step 3. Edit DESCRIPTION File

Package: cum
-- name of the package
Type: Package
Title: What the package does (short line)
-- contains no more than 65 characters
Version: 1.0
-- a sequence of non-negative integers, like: 1.0.2, 1-0-2
Date: 2014-05-30
-- Date that the package was created. Today’s date by default
Author: Who wrote it
-- all the authors, no limit
Maintainer: Who to complain to yourfault@somewhere.net
-- one name and an email address
Description: More about what it does (maybe more than one line)
-- Description of the package, no length limit
License: What license is it under?

-- Usually GPL-2 (GNU General Public License Version 2), which is good for CRAN
/ Bioconductor. Check “Writing R Extensions” for all license abbreviations.



mailto:yourfault@somewhere.net

Build an R Package
-- Step 4. Edit the .Rd File

Do the similar thing to all the .Rd files in man
folder.

Delete the comments or instructions. Change the
default content.

Note 1: All the content in \examples{} should be
compliable, or there will be an error later when
you check the R package.

Note 2: All the original comments need to be
deleted, or there will be an error.

Note 3: Do not leave a blank section. You can
delete the sections that are not applicable.



Build an R Package
-- Step 5. Preparation for Windows

Users
* Download and install Rtools. http://cran.r-
project.org/bin/windows/Rtools/

* Attention! Check the checkbox to update the
current PATH. | scmsommons -

Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Rtools, then
dick Next.

Edit the system PATH.

Current value:

PATH=C:\Program Files\Common Files\Microsoft Shared\Windows Live;

C:\Program Files (x86)\Common Files\Microsoft Shared\Windows Live;
C:\windows\system32;C: \windows;C: \windows\System32\Wbem;

C:\windows\System32\WindowsPowerShell\v1.0\;

C:\Program Files (x86)\Windows Live\Shared;

C:\Program Files (x86)\ATI Technologies\ATI. ACE\Core-Static;C: \Program

Check this box! Files (x86)\MiKTeX 2.9\miktex\bin\
Save version number 2. 15 in registry



http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/

Step 5 (Cont.)

Change the PATH in Control Panel.
Click System, then Advanced system settings.

Click the Advanced tap in the prompt window. Then
click the Environment Variable

In PATH, click Edit... AdG IS In the

front.
C:\Windows\SysWOW64\;c:\Rtools\bin;c:\Rtools\gcc
-4.6.3\bin;C:\Program Files\R\R-
3.0.3\bin\x64;c:\Rtools\perl\bin;c:\Rtools\MinGW\bin
;:c:\R\bin;c:\Rtools\MinGW;c:\Perl\bin;c:\Program
Files\MiKTex 2.6\miktex\bin;C:\Program Files

(x86)\SSH Communications Security\SSH Secure Shell




Build an R Package
-- Step 6. Build and install the R
package

In search box, type command prompt

In command prompt, change directory to the place
that contains the R package

Build R package using R CMD build pkgName. For
example | use R CMD build cum. A tar.gz file is built
under the working directory.

Install the R package using R CMD INSTALL pkgName.
For example, R CMD INSTALL cum_1.0.tar.gz.

If any error occurs, check the .Rd file. Then delete
cum_1.0.tar.gz, and re-run R CMD build, R CMD
INSTALL.



Build an R Package
-- Step 7. Check the R package

Install Miktex / (Mactex) package inconsolata
using mpm --verbose --install inconsolata.

Check the R package using R CMD check
pkgName.

If any errors or notes, check and edit the .Rd
files according to the notes, and then re-run R
CMD build, R CMD INSTALL.

You cannot skip this step because the pdf
manual file is generated in this step.



Build an R Package
-- Step 8. Use the R package

* In R environment, type library(pkgName). For
example, library(cum).

* You can type
cum
?my.cumsumprod

’datal

, and see the manual you just edited in .Rd
files.



Note 1: Import and Export in
NAMESPACE

* The original NAMESPACE file contains a line
exportPattern("/~[[:alpha:]]+"). If nothing is
changed, then every function in the package is
visible.

* |f you want only part of the functions visible, use
export(). Delete the line
exportPattern("~[[:alpha:]]+"), and change it to
export(function names). Then delete the .Rd files
that you want to hide.

* |f you used functions from other R packages, use
import(package names). You can also add a line
Depends: package names in file DESCRIPTION.



Note 2: Build an R package for
different systems

* Once you get the R package folder in one
system, just use it and run R CMD build, R
CMD INSTALL in different systems. You do not
need to run package.skeleton in different
systems.

* |n windows system, if you run R CMD INSTALL
--build cum_1.0.tar.gz instead of R CMD
INSTALL cum, you will get a .zip R package.



Questions?



Thank you!



